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Multiterm spherical tensor representation of Boltzmann’s equation for a nonhydrodynamic
weakly ionized plasma

R. E. Robson, R. Winkler, and F. Sigeneger
Institut für Niedertemperatur-Plasmaphysik, D-17489 Greifswald, Germany

~Received 13 December 2001; published 20 May 2002!

The Boltzmann equation corresponding to a general ‘‘multiterm’’ representation of the phase space distri-
bution functionf (r ,c,t) for charged particles in a gas in an electric field was reformulated entirely in terms of
spherical tensorsf m

l some time ago, and numerous applications, including extension to time varying and
crossed electric and magnetic fields, have followed. However, these applications have, by and large, been
limited to the hydrodynamic conditions that prevail in swarm experiments and the full potential of the tensor
formalism has thus never been realized. This paper resumes the discussion in the context of the more general
nonhydrodynamic situation. Geometries for which a simple Legendre polynomial expansion suffices to repre-
sentf are discussed briefly, but the emphasis is upon cylindrical geometry, where such simplification does not
arise. In particular, we consider an axisymmetric cylindrical column of weakly ionized plasma, and derive an
infinite hierarchy of integrodifferential equations for the expansion coefficients of the phase space distribution
function, valid for both electrons and ions, and for all types of binary interaction with neutral gas molecules.

DOI: 10.1103/PhysRevE.65.056410 PACS number~s!: 51.50.1v, 51.10.1y
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I. INTRODUCTION

The Boltzmann equation corresponding to the phase sp
distribution functionf (r ,c,t) of each charged particle com
ponent of a weakly ionized gas can be written as

~] t1c•“1a•]c1J! f 50. ~1!

Herea5qE/m is the force per unit mass acting on a partic
of chargeq, massm due to an electric fieldE. The operator
J acts in velocity space and accounts for the rate of chang
f due to various types of collisions between charged parti
and neutral gas molecules. It is a scalar operator and it is
linear, as long as the degree of ionization is sufficiently l
so that collisions between charged particles are negligi
There have been many methods advanced for the solutio
Eq. ~1! over the years, and a review of the literature to t
mid 1980s was given by Robson and Ness@1#. In Ref. @1#,
Eq. ~1! was reformulated in a very general way, entirely
terms of spherical tensorsf m

l , wherel 50,1,2,3, . . . andm
52 l , . . . ,l , with attention being focused upon collision
that do not conserve particle number, and their effect u
measured transport coefficients. Numerous applications
both ions and electrons, including extension to crossed e
tric and magnetic fields@2#, have followed, and the recen
review by Whiteet al. @3# summarizes the literature to th
present time. Note that explicit expressions forJ, including
simplified forms corresponding to limiting cases of very lig
or very heavy charged particles, are widely known—see,
example, Refs.@4,5#, but are not needed for the prese
study.

The analysis presented in Ref.@1# had swarm experiment
@4# specifically in mind, and consequently was slanted
wards the hydrodynamic regime, where the macroscopi
space-time dependence off (r ,c,t) is assumed to be pro
jected onto a lower level through a linear functional dep
dence upon the number densityn(r ,t) @5#. Swarm experi-
1063-651X/2002/65~5!/056410~10!/$20.00 65 0564
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ments determine transport coefficients, which are unfold
using this hydrodynamic kinetic theory formalism to yie
ion-molecule interaction potentials or electron-molecule i
pact cross sections@6#. This procedure is generally indepen
dent of the type of geometry, since all space dependenc
accounted for byn(r ,t), which in turn can be found by solv
ing a diffusion equation. It is at this level that geomet
appears, in the form of appropriate initial and boundary c
ditions for the diffusion equation, corresponding to the e
periment at hand. Put another way, hydrodynamic kine
theory generally~but not always@7#! has nothing to do with
geometry or experimental arrangementper se.

This contrasts with the modern day demands for a rig
ous nonhydrodynamickinetic theory for low-temperature
plasmas, where, although kinetic equations of the sa
mathematicalform as in the swarm case apply for eac
charged species~as long as the degree of ionization is not t
high, as already noted!, the focus is often on the need t
understand the behavior in the neighborhood of sources
boundaries, and otherwise on geometry in general. La
gradients may prevail, fields may vary in space and time,
hydrodynamic kinetic theory may consequently not be
much use. Configuration space and velocity coordinates m
be treated on an equal footing: geometry and kinetic the
are thus intertwined, a fact that was well known to neutr
transport theorists a long time ago@8#. The extensive analysis
that has been carried out in recent times for electrons
low-temperature plasmas in planar geometry@9#, using a
simple Legendre polynomial representation of the distrib
tion function, does not carry over to other geometries in
straightforward way. Higher order tensor spherical harm
ics representation of the velocity distribution appears
avoidable, and spherical notation appears to offer advanta
over the equivalent Cartesian representation@10–12# ~see
notes on tensors in the Appendix!. Fortunately, most of the
hard work has already been done in Ref.@1#, and the presen
paper resumes the discussion at this point and deals in
©2002 The American Physical Society10-1
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ticular with cylindrical geometry. The aim is to develop
general framework for solving the Boltzmann equation, va
for both ions and electrons and all important types of bin
charged particle–neutral molecule collisions, and yield
equations that can ultimately be solved using an appropr
numerical technique, for example, finite differences, Ga
kin method, etc. The emphasis in the present paper is o
derivation of the hierarchy of equations, and applicatio
will be reported in later papers.

The discussion proceeds from the general form of
multiterm representation of the phase space distribution
spherical harmonicsYm

l in Sec. II, and circumstances a
considered where this reduces to a simple Legendre pol
mial expansion. In Sec. III, we specialize to cylindrical g
ometry, and give the hierarchy of equations correspondin
the axially symmetric case. A further reduction of the nu
ber and complexity of equations in the hierarchy resu
when axial fields and gradients can be neglected.

II. THE BASIC FORMALISM

A. General representation of the Boltzmann equation
in the spherical harmonic basis

The starting point for most modern-day solutions of Bo
zmann’s equation is the now familiar decomposition of t
charged particle phase space distribution function in term
spherical harmonics in velocity space~these are defined in
the Appendix according to the phase convention of Fano
Racah@13#!, the so-called ‘‘multiterm’’ expansion,

f ~r ,c,t !5(
l 50

`

(
m52 l

l

f m
( l )~r ,c,t !Ym

[ l ]~ ĉ!, ~2!

which in turn is used to decompose the Boltzmann equa
~1!. Truncation of the infinite summation atl 5 l max corre-
sponds to the ‘‘l max11-term approximation,’’ or in neutron
transport parlance, the ‘‘Pl max

approximation’’@8#. After sub-

stitution of Eq. ~2! into Eq. ~1!, multiplication by Ym
( l )( ĉ)

[Ym
[ l ] ( ĉ)* , and integration over all directionsĉ of velocity

space, the following infinite hierarchy of coupled integrod
ferential equations for the expansion coefficientsf m

( l ) results
@see Ref.@1#, Eq. ~22!, but note that we arenot now takingE
to be along thez direction only#:

] t f m
( l )1 (

l 8m8m

~ l 8m81mu lm!^ l ic[1] i l 8&Gm
(11)f m8

( l 8)

1 (
l 8m8m

~ l 8m81mu lm!^ l i]c
[1] i l 8&am

(1)f m8
( l 8)

52Jl~ f m
( l )!,

~3!

where l 50,1,2, . . . ,̀ ; m52 l , . . . ,l . Values of the
Clebsch-Gordan coefficients (l 8m81mu lm) are given by
Condon and Shortley@14# and are of a particularly simple
form. We have assumed that the collision operatorJ is a
linear, scalar operator in velocity space, with spherical co
ponentsJl . The explicit form of the latter is not needed her
05641
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and in any case they are well known, e.g., the approxim
differential-finite difference form favored for light ions an
electrons@4,5,9#. The reduced matrix elements^ l i•••i l 8&
were calculated in Ref.@1# and are shown below

l 8 ^ l ic[1] i l 8& ^ l i]c
[1] i l 8&

l 11 cA l 11

2l 11
A l 11

2l 11 F ]

]c
2

l 21

c G
l 21 cA l

2l 11
A l

2l 11 F ]

]c
1

l 12

c G
otherwise 0 0.

Limits for the summations are normally not shown, it bei
implicitly understood that they run over all values of th
indices for which the summand is nonzero. In Eq.~3! the
‘‘selection rules’’ are thus

l 85 l 61,

m85m2m, m50, 61.

The gradient tensor operatorGm
(11) and field vectoram

(1) com-
ponents are defined in Ref.@1# for Cartesian coordinates an
also in Eq.~31! below for cylindrical polar coordinates.

We could go on to include a magnetic field as Ness
done@2# by adding an appropriate term to the left-hand s
of Eq. ~3! ~essentially the matrix elements of the angu
momentum operator of quantum mechanics!, but for the
present the interest is only in electric fields.

In practice both the infinite summation~2! and the hierar-
chy ~3! are truncated at some finite valuel max, with the ‘‘two
term’’ approximation corresponding tol max51. Further de-
composition of the coefficientsf m

( l )(r ,c,t) in speed space by
some standard method~e.g., finite difference, polynomial ex
pansion, etc.!, and of course appropriate representation
time and spatial coordinates, is necessary to effect a solu
We emphasize that equations~3! @and the ‘‘multiterm’’ ex-
pansion~2! from which they derive# are quite independent o
any such considerations, and can be used as the launc
point for any study of charged particles, be it hydrodynam
or nonhydrodynamic, in whatever geometry desired.

B. Some quantities of physical interest

The main quantities of physical interest are the num
densityn, mean energye, mean velocityv, and energy fluxj .
If velocity space averaging is denoted by the angular bra
ets ^•••&, then in spherical tensor notation these are as
lows.

Number density:

n5E f ~r ,c,t !dc5A4pE
0

`

f 0
(0)~r ,c,t !c2dc. ~4!

Mean energy:
0-2
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e5 K 1

2
mc2L 5

1

nE 1

2
mc2f ~r ,c,t !dc

5
1

n
A4pE

0

`

f 0
(0)~r ,c,t !

1

2
mc4dc. ~5!

Mean velocity:

vm
(1)5^cm

(1)&5
1

nE cm
(1)f ~r ,c,t !dc

5
1

n
A4p

3 E
0

`

f m
(1)~r ,c,t !c3dc. ~6!

Mean energy flux:

j m
(1)5 K 1

2
nmc2cm

(1)L 5E 1

2
mc2cm

(1)f ~r ,c,t !dc

5A4p

3 E
0

`

f m
(1)~r ,c,t !

1

2
mc5dc. ~7!

In the above the spherical components are defined as in
~A7! of the Appendix form50,61. The corresponding Car
tesian components could, if desired, be found by invert
these equations.

This concludes the general discussion. The specializa
to particular geometry now follows.

C. When can a simple Legendre polynomial expansion
be used?

1. Plane parallel geometry

If there is only one preferred directionâ in a physical
system, then there is only one way in which we can form
tensor of rankl from it, and that is through a spherical ha
monic. Thus for any arbitrary tensorf m

( l ) associated with such
a system, we must have

f m
( l )5FlYm

( l )~ â!, ~8!

where Fl is scalar coefficient. This is the case for plan
systems, for example, whereâ defines the direction of field
and gradient normal to the electrodes, taken to be thez axis
for simplicity. After substituting in Eq.~2! and using the
addition theorem for spherical harmonics~A5!, we obtain the
familiar Legendre polynomial expansion

f 5(
l 50

`

f l~z,c,t !Pl~cosx!, ~9!

where cosx5â• ĉ and f l5@(2l 11)/4p#Fl . Although we
could generate the equations forf l(z,c,t) by substituting Eq.
~8! into the general representation~3!, the usual procedure
~and the simplest one! is to substitute the expansion~9! di-
rectly into the Boltzmann equation~1!, and to equate coeffi
cients of Legendre polynomials. Either way we arrive at
familiar chain of equations,
05641
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] t f l1 (
p561

D l
(p)F c]z1az

S ]c1p

l 1
3p11

2

c
D G f l 1p

52Jl~ f l ! ~ l 50,1,2, . . . ,̀ !, ~10!

where the coefficients are defined byD l
(1)5( l 11)/(2l

13) andD l
(2)5 l /(2l 21).

2. Spherical geometry

Consider a plasma confined in a spherical container
which any fields and gradients are directed in the radial
rection r̂[â only. This forms an axis of rotational symmetr
and therefore similar considerations apply as in the cas
plane geometry. In particular, the distribution function can
represented by a Legendre polynomial expansion in term
f l(r ,c,t) similar to Eq.~9!. Upon substitution of this into the
Boltzmann equation~1! the following hierarchy results:

] t f l1 (
p561

D l
(p)F cS ] r1p

l 1
3p11

2

r
D

1ar
S ]c1p

l 1
3p11

2

c
D G f l 1p52Jl~ f l !

~ l 50,1,2, . . . ,̀ !. ~11!

Note the symmetry with respect to interchange ofc andr on
the left-hand side in this case. A similar result was obtain
previously by Sigenegeret al. @15#. In both cases describe
above, the number of equations and unknowns correspo
ing to truncation atl 5 l max is simply l max11.

III. CYLINDRICAL GEOMETRY

A. Axial symmetry and tensor structure

Let r5(r,w,z) and c5(c,uc ,wc) denote cylindrical co-
ordinates in configuration space and spherical coordinate
velocity space, respectively. To make matters as simple
possible, we assume rotational symmetry about the axi
the cylinder, with no azimuthal field or gradients. Howev
this doesnot mean that the distribution of velocities also h
this property, as was already pointed out in Ref.@1#, since
any radial field or gradient provides a preferred directionr̂ in
velocity space, in a plane perpendicular to the cylinde
axis, along which charged particles flow preferentially.
this case, the phase space distribution function must have
form

f ~r ,c,t !5 f ~r,z;c,uc ,wc2w;t !, ~12!

where the dependence upon thedifferenceof the azimuthal
angles reflects the requirement for invariance of theshapeof
the velocity distribution with respect to rotations about t
axis of the cylinder. This has the immediate consequence
the tensor expansion coefficients must have the property
0-3
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f m
( l )5NlmFl ,me2 imw, ~13!

where the factor

Nlm5~2 i ! l~21!(m1umu)/2S 4p~ l 1umu!!
~2l 11!~ l 2umu!! D

1/2

has been extracted merely for convenience. The distribu
function follows from Eqs.~2! and ~13!,

f 5(
l 50

`

(
m52 l

l

Fl ,m~r,z;c;t !Pl
umu~cosuc!e

im(wc2w), ~14!

where Pl
umu(cosuc) is an associated Legendre function~see

Appendix!, and f clearly has the functional dependence p
scribed by Eq.~12!. When Eq.~13! is substituted into the
general hierarchy~3!, it is found that the equations are in
variant under the transformationm→2m provided that

Fl ,2m5Fl ,m . ~15!

This very important result is simply a consequence of
symmetry of the distribution function in thecx2cy plane in
directions normal to the radial vectorr̂, i.e., Eq. ~14! can
depend upon only themagnitudeof wc2w. This, together
with properties of spherical harmonics@see Eq.~A1! of the
Appendix#, leads directly to Eq.~15!. It means thatit is nec-
essary to calculate Fl ,m ~and hence fm

( l )) with only non-
negative values of m50,1,2, . . . ,l in the axisymmetric case.
Note that from now onFl ,m will be considered the quantitie
of primary importance, and the hierarchy~3! will be ex-
pressed in terms of these quantities accordingly. In gene
they are functions of speed, time, radial and axial coo
nates, i.e.,

Fl ,m5Fl ,m~r,z;c;t !, ~16!

although we shall not always make this dependence exp

B. The quantities of physical interest

1. Moments

The moments of physical interest follow from Eqs.~4!–
~7!, ~13!, and~A8!.

Number density:

n54pE
0

`

F0,0c2dc. ~17!

Mean energy:

e5
1

n
4pE

0

`

F0,0

1

2
mc4dc. ~18!

Mean axial velocity:

vz5
1

n

4p

3 E
0

`

F1,0c3dc. ~19!

Mean radial velocity:
05641
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vr5
1

n

8p

3 E
0

`

F1,1c
3dc. ~20!

Axial energy flux:

j z5
4p

3 E
0

`

F1,0

1

2
mc5dc. ~21!

Radial energy flux:

j r5
8p

3 E
0

`

F1,1

1

2
mc5dc. ~22!

To this list we add the following second rank tensor, who
physical meaning is the traceless part of the momentum fl

P5nmK cc2
c2

3
IL .

The connection with the spherical components of the dis
bution function may be found using Eqs.~49! and ~50! of
Ref. @16#. The nonzero components are then expressible
cylindrical components as follows:

Prr5amE
0

`

@12F2,22F2,0#c
4dc,

Pzz52amE
0

`

F2,0c4dc,

~23!

Prz5Pzr56amE
0

`

F2,1c4dc,

Pww52Pzz2Prr ,

wherea54p/15.
All these integral quantities are in general functions

z, r, and t. One evaluates the integrals over speedsc after
solving the hierarchy of equations below forFl ,m
[Fl ,m(r,z;c;t).

2. Balance equations

Before proceeding to the hierarchy of equations for
Fl ,m , it is interesting to write down the balance equations
the above moments. These have an existence independe
the Boltzmann equation and are very useful in serving
provide an integral consistency check for any tensor rep
sentation. Thus quite generally we have the following eq
tions @17#.

~i! The equation of continuity:

] tn1
1

r
]r~rnvr!1]z~nvz!52Rcoll . ~24!

~ii ! The energy balance equation:
0-4
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] t~ne!1
1

r
]r~rn jr!1]z~n jz!2nqvr Er2nqvz Ez

52Rcoll
e . ~25!

~iii ! Radial momentum balance equation:

] t~nmvr!1
2

3
]r~n«!2nqEr1S ]r1

2

r DPrr1
Pzz

r
1]zPrz

52Rr,coll . ~26!

~iv! Axial momentum balance equation:

] t~nmvz!1
2

3
]z~n«!2nqEz1S ]r1

1

r DPrz1]zPzz

52Rz,coll . ~27!

In these equations the terms on the right-hand side repre
the rate of loss of particle number, energy, radial and a
components of momentum, respectively.

3. Collision loss terms

We now express the right-hand side of each of the ab
balance equations in terms of the spherical component
the distribution function and the corresponding spheri
components of the collision operator.

~i! Rate of particle loss:

Rcoll5E J~ f !dc54pE
0

`

J0~F0,0!c
2dc. ~28!

~ii ! Rate of loss of energy:

Rcoll
e 5E 1

2
mc2J~ f !dc54pE

0

`1

2
mc4J0~F0,0!dc. ~29!
ent
l

e
of
l

~iii ! Rate of loss of momentum:

Rcoll5E mcJ~ f !dc5Rr,collr̂1Rz,collẑ,

where the radial and axial components are given by

Rr,coll5
8p

3 E
0

`

mc3J1~F1,1!dc,

Rz,coll5
4p

3 E
0

`

mc3J1~F1,0!dc, ~30!

respectively.

C. The hierarchy of equations for F l ,m

As mentioned previously, Eqs.~3! apply to any geometry.
The gradient tensor and field terms can be found from Ta
I of Ref. @1#, and for the special case of cylindrical coord
nates (r,w,z) are

m Gm
(11) am

(1)

0 2 i ]z 2 iaz

11
e2 iw

A2
S i ]r1

1

r
]wD iar

A2
e2 iw

21
eiw

A2
S 2 i ]r1

1

r
]wD 2 iar

A2
eiw, ~31!

whereaz5qEz /m and ar5qEr /m denote axial and radia
field terms, respectively. Even though there is axial symm
try in configuration space, it is essential to retain the a
muthal derivatives]w when dealing with the distribution
function, as explained in Sec. III A. The general spheri
harmonic representation of Boltzmann’s equation is c
verted into one appropriate for cylindrical geometry by su
stitution of Eqs.~13! and ~31! into Eq. ~3!:
] tFl ,m1(
l 8

i 21
Nl 8m

Nlm
~ l 8m10u lm!^ l ic[1] i l 8&]zFl 8,m1

1

A2
(
l 8

i
Nl 8m21

Nlm
~ l 8m2111u lm!^ l ic[1] i l 8&

3F]r2
m21

r GFl 8,m211
1

A2
(
l 8

i 21
Nl 8m11

Nlm
~ l 8m11121u lm!^ l ic[1] i l 8&F]r1

m11

r GFl 8,m11

1az(
l 8

i 21
Nl 8m

Nlm
~ l 8m10u lm!^ l i]c

[1] i l 8&Fl 8,m1
ar

A2
(
l 8

i
Nl 8m21

Nlm
~ l 8m2111u lm!^ l i]c

[1] i l 8&Fl 8,m21

1
ar

A2
(
l 8

i 21
Nl 8m11

Nlm
~ l 8m1111u lm!^ l i]c

[1] i l 8&Fl 8,m1152Jl~Fl ,m! ~ l 50,1,2, . . . ,̀ ; m50,1,2, . . . ,l !.

~32!

056410-5
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If the expansion and hierarchy are truncated atl 5 l max,
there resultsN5 1

2 ( l max12)(lmax11) equations and the sam
number of unknowns. The above can be written in a far m
concise form after substituting for the reduced matrix e
ments and Clebsch-Gordan coefficients,

] tFl ,m1 (
p561

D lm
(p,0)F c]z1az

S ]c1p

l 1
3p11

2

c
D GFl 1p,m

1 (
p561, q561

D lm
(p,q)F cS ]r1q

~m1q!

r D

1ar
S ]c1p

l 1
3p11

2

c
D GFl 1p,m1q52Jl~Fl ,m!

~ l 50,1,2, . . . ,̀ ; m50,1,2, . . . ,l !, ~33!

where the coefficients are defined below:

D lm
(1,0)5

l 1m11

2l 13
, D lm

(2,0)5
l 2m

2l 21
,

D lm
(1,1)5

~ l 1m12!~ l 1m11!

2~2l 13!
, D lm.0

(1,2)52
1

2~2l 13!
,

D l0
(1,2)5

~ l 11!~ l 12!

2~2l 13!
,

D lm
(2,1)52

~ l 2m21!~ l 2m!

2~2l 21!
, D lm.0

(2,2)5
1

2~2l 21!
,

D l0
(2,2)52

l ~ l 21!

2~2l 21!
.

It is clear that field and gradient terms step thel index by
61. However, while the axial field and gradient leave them
index unchanged, the radial field and gradient each step
m index by61. It is implicit in these equations that any ter
Fl ,m for which m. l should be set to zero, and that an
coefficient with m,0 should be related to its counterpa
with positivem through Eq.~15!.

By multiplying the (l ,m)5(0,0) member of the hierarch

in succession by 4p and 4p 1
2 mc2 and integrating over al

speedsc, we obtain the equations of continuity and ener
balance~24! and ~25!, respectively. If the (l ,m)5(1,1) and
(1,0) members are multiplied by (8p/3)mc and (4p/3)mc,
respectively, and integrated over all speedsc, the radial and
axial momentum balance equations~26! and ~27! are re-
gained. Such consistency considerations are important
establishing the integrity of the hierarchy.

D. Radial field and gradient only

Suppose now there is neither axial field nor axial gradie
with the field and any spatial dependence being entirely
05641
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the radial directionr̂. We cannot takeFl ,m as simply propor-
tional to a spherical harmonic withr̂ as its argument, since
all directions arenot equivalent with respect to rotation
about the radial direction. In other words, a Legendre po
nomial representation off in velocity space does not suffice
The only simplification we can make is through the obser
tion that the distribution of velocities~14! must be invariant
under a reflection through thex-y plane, i.e.,f does not
change under the transformationuc→p2uc or simply
cosuc→2cosuc . The properties of the Legendre function
@see Eq.~A2! of the Appendix# then lead to the result

Fl ,m5~21! l 1mFl ,m , ~34!

or, in other words,

l 1m5even. ~35!

If one omits thez-dependent terms in the general hiera
chy ~33!, we find that the resulting chain of equations sep
rates into two subsystems, couplingFl ,m for which l 1m is
even or odd, respectively. The condition~35! tells us then
that we need only consider the former, as the latter are id
tically zero. We have then

] tFl ,m1 (
p561, q561

D lm
(p,q)F cS ]r1q

~m1q!

r D

1ar
S ]c1p

l 1
3p11

2

c
D GFl 1p,m1q

52Jl~Fl ,m!

~ l 50,1,2, . . . ,̀ ; m50,1,2, . . . ,l ; l 1m5even!, ~36!

which is a hierarchy of equations for the quantiti
F0,0,F1,1,F2,2,F2,0, . . . , from which all quantities of physi-
cal interest can be found directly from Sec. III B. For e
ample, the first two members of the hierarchy are

] tF0,01
2

3 F c

r
]r~rF1,1!1

ar

c2
]c~c2F1,1!G52J0~F0,0!

~37!

and

] tF1,11
1

2
@c]rF0,01ar]cF0,0#1

6

5 F c

r2
]r~r2F2,2!

1
ar

c3
]c~c3F2,2!G2

1

10Fc]rF2,01
ar

c3
]c~c3F2,0!G

52J1~F1,1!. ~38!

After appropriate moments of these equations are taken
respect to speed, there follow the equations of continu
energy, and~radial! momentum balance, as shown in Se
III B ~axial terms vanish!.
0-6
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The next two members of the hierarchy, corresponding
l 52, m50 andl 52, m52, are, respectively,

] tF2,01
12

7 F c

r
]r~rF3,1!1

ar

c4
~c4F3,1!G2

2

3 F c

r
]r~rF1,1!

1car]cS F1,1

c D G52J2~F2,0! ~39!

and

] tF2,21
15

7 F c

r3
]r~r3F3,3!1

ar

c4
~c4F3,3!G2

1

14Fcr]rS F3,1

r D
1

ar

c4
]c~c4F3,1!G1

1

6 Fcr]rS F1,1

r D1car]cS F1,1

c D G
52J2~F2,2!. ~40!

Lower-order equations are obviously coupled to higher eq
tions in bothl andm indices and truncation to finite size
required to effect a solution. In the ‘‘l max11 term approxi-
mation’’ we set Fl ,m50, m50,1,2, . . . ,l , for all l . l max.
Thus, for example, forl max53, one has all the above equ
tions and the final two

] tF3,12
1

5 F c

r2
]r~r2F2,2!1c2ar]cS F2,2

c2 D G
1

1

10Fc]rF2,01c2ar]cS F2,0

c2 D G52J3~F3,1!,

~41!

] tF3,31
1

10Fcr2]rS F2,2

r2 D 1c2ar]cS F2,2

c2 D G52J3~F3,3!,

~42!

making a total of six equations in six unknowns. In gene
for truncation atl 5 l max there are eitherN5 1

4 ( l max11)(lmax
13) or N5 1

4 ( l max12)2 such quantities and equations, d
pending upon whetherl max is odd or even, respectively.

In this scheme, the values ofm are automatically limited
once an upper bound is placed uponl, and there is no need
for any further truncation condition. However, for practic
purposes, and based upon the experience for electron
crossed electric and magnetic fields@2,3#, separate truncation
in m may prove to be worthwhile. This would reduce th
number of equations and the corresponding time require
effect a numerical solution. However, we have reached
end of what can be done analytically, and there are no m
symmetries to be exploited. That is, no further reduction
possible, and nothing further can be said without specifi
tion of the plasma configuration, including initial and boun
ary conditions, and an appropriate method of numerical
lution of the equations.

Special cases of both hierarchy equation systems~33! and
~36! related to the cylindrical plasma geometry have alrea
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been reported over the last decade, but these have m
been limited to the two-term approximation, obtained
truncation of the hierarchy of equations~33! taking Fl ,m

50 for l>2 and for all correspondingm. In recent studies of
plasma kinetics@18# the further simplification to time-
independent states and axial uniformity has made for a
tionary, one spatial dimension problem. The calculatio
were carried out with a view to model the radially depend
electron properties in the plasma column of cylindrical
glow discharges. The two-term treatment was recently
tended@19# to include two spatial dimensions, with axial a
well as radial space dependence, and in this way a stud
axial relaxation processes in a dc plasma column, with ra
space-charge confinement of electrons was made poss
Furthermore, we note that a very recent multiterm treatm
using Cartesian tensors and Mathematica@12#, dealing with
the special case of radial fields and gradients only, has b
developed to study the effect of increasing the order of
proximation on the electron kinetics in specific cylindric
hollow cathodes. A hierarchy of Cartesian tensor equation
rank 5 was generated with the help of Mathematica, wh
has been checked up to rank 3 to be fully equivalent to
truncated (l max53) hierarchy ~37!–~42!. In contrast, the
spherical tensor-based hierarchies~33! and ~36! are com-
pletely specified in a straightforward way toall orders, and
are thus in a form suitable for immediate coding for comp
tational purposes.

IV. CONCLUDING REMARKS

This paper started with a very general, infinite hierarc
of integrodifferential equations~3!, representing Boltzmann’s
equation for any charged species in a weakly ionized plas
obtained by decomposition of the corresponding phase sp
distribution function in velocity directions, using spheric
harmonics and spherical tensor notation@1,16#. As in Ref.@1#
the goal has been to lay the foundations for future numer
calculations, by deriving the simplest possible set of eq
tions, involving the maximum number of independent va
ables consistent with the geometry at hand, and to do thi
the most transparent and general way possible. Unlike an
sis of the hydrodynamic regime, where spatial and tempo
dependence is projected onto a different level~using, for
example, a density gradient expansion@5#!, the present pape
treats configuration and velocity space on an equal foot
and is therefore suitable fornonhydrodynamicsituations.

First of all we briefly considered two relatively simpl
cases, corresponding to plane parallel and spherical ge
etry, respectively, where a Legendre polynomial expans
suffices to represent the distribution function, with a cor
sponding simplified hierarchy of equations for the expans
coefficients. Then we moved on to the more interesting c
of an axisymmetric, cylindrical column of plasma, and d
rived the corresponding hierarchy of equations~33! for the
components of the distribution function, from which a
quantities of physical interest may be derived. When ther
neither axial field nor axial gradient a significantly simplifie
hierarchy~36! results.
0-7
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These spherical tensor-based equations are very gen
and can be solved with standard forms of the collision
erators Jl , incorporating all types of binary charge
particle–gas molecule interactions@4–6#, once further repre-
sentations in configuration and speed~or energy! space are
made, and the temporal dependence dealt with accordin
Any desired numerical technique can be used in this resp
For example, for electrons, for which theJl can be consid-
erably simplified@4,5,9#, a finite difference representation i
speed space, similar to the one that has met with great
cess for planar geometry@9,20#, could be employed. Sonin
polynomial decomposition in speed space~leading to an
overall representation in terms of Burnett functions in velo
ity space! is another option for both electrons and ions@21#.
Quantities of physical interest can then be obtained as i
grals of the solutions of these equations according to E
~17!–~23!.

We have highlighted the practical advantages that th
spherical tensor-based equations offer over existing Ca
sian counterparts, which have so far only been generated
relatively low orders with the aid of Mathematica and for t
specific case of axial homogeneity. In contrast, the hie
chies ~33! and ~36! are ready for immediate coding to an
desired order in numerical applications. A reformulation
terms of Cartesian tensors with only two indices@22# could
also be an interesting alternative.

Looking to the future, one sees the need for a multite
representation of thenonlinear Boltzmann equation, which
arises in cases where the degree of ionization is such
Coulomb collisions between charged particles can no lon
be neglected. There are two important general considerat
here.

~i! First, from the point of view of the mathematical re
formulation, we emphasize that since the symmetries in
locity and configuration space are unaltered, the comp
left-hand side of the kinetic equation, plus the linear cha
particle–neutral collision term on the right-hand side,
shown in the present paper, remain intact—it is the spher
harmonic representation of the new nonlinear collision ter
on the right-hand side that requires attention. In perform
the corresponding tensor analysis we might expect to a
usefully draw on the results of Kumar@16#, who has given an
exact representation of the nonlinear Boltzmann elastic
lision operator in the Burnett function basis, using the Ta
transformation. An alternative approach, without the Ta
transformation, and using a representation of the velo
distribution function in terms of generalized tensor Herm
polynomials, has been given by Suchy@23#.

~ii ! Second, a note of warning must be given when
comes to approximating the charge-charge Boltzmann c
sion operator by a Fokker-Planck operator. If the veloc
distribution is nearly isotropic, making the two-term appro
mation reasonable, use of the Fokker-Planck operator se
perfectly in order. Such cases have been treated rece
@24,25#. However, when the distribution function is anis
tropic, necessitating the use of multiterm analysis, there
question mark over the accuracy of the Fokker-Planck op
tor, as it neglects contributions from higher-l terms@26#. Dis-
cussion of both these points is left to a future paper.
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In summary, this paper both complements and general
the multiterm, hydrodynamic formulation for swarms give
in Ref. @1#. Just as the latter work laid the foundation f
many subsequent numerical calculations of transport co
cients for both ions and electron swarms~see the review by
White et al. @3#!, it is hoped that the present paper will b
helpful for future applications to low-temperature plasma
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APPENDIX

1. Notes on the use of irreducible spherical tensors

It is generally accepted that the equations of physics t
their simplest form when expressed as relations betwee
reducible tensorial sets, and that such representation is
useful for exploitation of any symmetries that might preva
If one follows this prescription, one expects to obtain equ
tions that involve the minimum possible number of indepe
dent quantities required to describe the system, thus enh
ing both the transparency of the theory for purposes
physical insight, and the economy of subsequent comp
tional effort. The standard reference on the subject is
treatise by Fano and Racah@13#. While Cartesian irreducible
tensors are still sometimes used in kinetic theory@11,12#,
they appear unwieldy when dealing with quantities of ev
moderately high rank, and spherical tensorsf m

( l ) seem to offer
greater advantages. This is because there are only two
cesl 50,1,2,3, . . . andm52 l , . . . ,l to contend with, what-
ever the rankl, whereas with Cartesian tensors the numbe
indices usually increases with the rank. In addition, transf
mations under rotations of the coordinate frame are m
concisely expressed in the spherical format. Note, howe
that it is also possible to formulate Cartesian tensors in s
a way that only two indices appear@22#, and a representation
of the Boltzmann’s equation in this basis may also be p
sible. It is to be emphasized that the difference between
two types of tensorial formulations is one of practicality a
economy, rather than of principle.

Spherical tensors were originally a product of atomic a
nuclear physics, and found their way into the kinetic theo
of gases in the mid 1960s, in a series of papers by Kum
@16,27#, who discussed the connection between spherical
Cartesian tensors. However, he confined the application
near equilibrium situations and to the Chapman-Ensk
method of solution of the Boltzmann equation in particul
Since that time irreducible spherical tensors have becom
integral part of the kinetic theory of charged particles in g
eous media far from equilibrium. The theory of electro
transport in the hydrodynamic regime, for so long confin
by the limitations of representation of the velocity distrib
tion function by only the first two terms of a spherical ha
monic expansion@4#, has in particular blossomed with th
aid of irreducible tensorial set theory, to the point whe
nowadays the coupling and recoupling of fields and gradie
0-8
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in multiterm analysis of the Boltzmann equation is carrie
out as a matter of course in computation of hydrodynam
transport coefficients@1–3#.

2. Tensor notation and identities

The tensor formalism and convention followed here is
out in detail by Fano and Racah@13#, in the papers by Kuma
@16,17#, and in the key reference@1#, and only essential defi
nitions will be given here. A contrastandard tensorf m

[ l ] of
rank l is a set of 2l 11 objects (m52 l , . . . ,l ), which trans-
form under rotations of the coordinate frame like a spher
harmonic,

Ym
[ l ]~u,w!5 i l~21!(m1umu)/2S ~2l 11!~ l 2umu!!

4p~ l 1umu!! D 1/2

3Pl
umu~cosu!eimw,

where the associated Legendre functions are defined by

Pl
umu~cosu!5

~21! l

2l l !
~sinu! umu dl 1umu

d cosu l 1umu ~12cos2 u! l .

It can be seen from these definitions that

Y2m
[ l ] ~u,0!5~21!mYm

[ l ]~u,0! ~A1!

and

Pl
umu~2cosu!5~21! l 1mPl

umu~cosu! ~A2!

are identities that have been used in obtaining Eqs.~14! and
~25!, respectively. Normally we abbreviate the angular d
pendence by writingr̂5(u,w) and denote the spherical ha
monic accordingly byYm

[ l ] ( r̂ ). The corresponding standar
tensor is simply the complex conjugate, and is denoted b

f m
( l )5 f m

[ l ] * .

We can have tensoroperators, for example, the gradient op
eratorGm

(sl) defined by equation~31! and Table I of Ref.@1#.
Any two tensors,f m1

[ l 1] andgm2

[ l 2] can be coupled according t

the prescription
ys

th
ud
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c

t

l
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~ f m1

[ l 1] ,gm2

[ l 2]
!m

[ l ]5 (
m1 ,m2

~ l 1m1l 2m2u lm! f m1

[ l 1]gm2

[ l 2] , ~A3!

where the sum is over all allowed values of them indices and
( l 1m1l 2m2u lm) is a Clebsch-Gordan or Wigner coefficien
which vanishes unlessm5m11m2 and l 11 l 2> l>u l 12 l 2u.
These coefficients have orthogonality properties that are
lined in many textbooks on angular momentum theory
well as in Refs.@1# and @16#, and are tabulated for lowe
orders by Condon and Shortley@14#.

When two spherical harmonics of the same argument
coupled, the result is another spherical harmonic,

@Y[ l 1]~ r̂ !,Y[ l 2]~ r̂ !#m
[ l ]5s~ l 1 ,l 2 ,l !Ym

[ l ]~ r̂ !, ~A4!

where

s~ l 1 ,l 2 ,l !5 i l 11 l 22 l S ~2l 111!~2l 211!

4p~2l 11! D 1/2

~ l 10l 20u l0!.

In deriving Eq.~9! we used the addition theorem for sphe
cal harmonics,

Pl~ r̂1• r̂2!5
4p

2l 11 (
m52 l

l

Ym
( l )~ r̂1!Ym

[ l ]~ r̂2!. ~A5!

The standard spherical components of an arbitrary vectoa
are represented by

am
(1)5A4p

3
aYm

[1]~ â!, m50,61 ~A6!

and are related to Cartesian components by

a0
(1)52 iaz ,

a61
(1)5

1

A2
~6 iax1ay!, ~A7!

while for cylindrical coordinates

a61
(1)56

ia%e7 iw

A2
. ~A8!
the
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